Skip to main content
Log in

Electrocatalytic valorization into H2 and hydrocarbons of an aqueous stream derived from hydrothermal liquefaction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrocatalytic oxidation is an attractive process for valorizing the organic compounds and removing the nitrogen in aqueous waste streams at ambient conditions. We evaluated the electrocatalytic oxidation reaction as a function of applied potential over Pt electrodes of an aqueous stream generated via hydrothermal liquefaction. We quantified the conversion of particular organic compounds (e.g., carboxylic acids, alpha hydroxyacids, alcohols, ketones, and amides) and the removal of carbon, nitrogen, sulfur, and chemical oxygen demand. Organic nitrogen and sulfur were oxidized to nitrates and sulfates. The main reaction products from the electrocatalytic oxidation at the anode were short chain volatile hydrocarbons (i.e., olefins, and paraffins) and CO2, while H2 was generated at the cathode. Unidentified compounds were converted to short chain carboxylic acids, alcohol and ketones, while ammonia was oxidized into N2. Studies with model compounds showed that amides and alpha hydroxyacids yielded carboxylic acids that convert further via (non-)Kolbe chemistry. Simultaneous denitrification, valorization of organic compounds, and H2 generation from the aqueous stream can potentially simplify the unit operations currently used in a hydrothermal process. The cost of the electricity required to drive the electrocatalytic operation can be partially mitigated by selling the excess H2 produced.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Snowden-Swan LJ, Hallen RT, Zhu Y, Hart TR, Bearden MD, Liu J, Seiple TE, Albrecht KO, Jones SB, Fox SP, Schmidt AJ, Maupin GD, Billing JM, Elliott DC (2017) Conceptual biorefinery design and research targeted for 2022: hydrothermal liquefaction processing of wet waste to fuels; PNNL-27186 BM0108010; Pacific Northwest National Lab. (PNNL), Richland, WA (United States). DOI 10.2172/1415710

  2. Meyer PA, Snowden-Swan LJ, Rappé KG, Jones SB, Westover TL, Cafferty KG (2016) Field-to-fuel performance testing of lignocellulosic feedstocks for fast pyrolysis and upgrading: techno-economic analysis and greenhouse gas life cycle analysis. Energy Fuels 30(11):9427–9439. https://doi.org/10.1021/acs.energyfuels.6b01643

    Article  CAS  Google Scholar 

  3. Jones S, Meyer P, Snowden-Swan L (2013) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels: fast pyrolysis and hydrotreating bio-oil pathway. DOI PNNL - 23053 NREL/TP - 5100 - 61178

  4. Jones S, Snowden-Swan L (2013) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: 2012 State of Technology and Projections to 2017. DOI 10.2172/1071990

  5. Albrecht KO, Dagle RA, Howe DT, Lopez-Ruiz JA, Davidson SD, Maddi B, Cooper AR, Panisko EA (2018) Final report for the project characterization and valorization of aqueous phases derived from liquefaction and upgrading of bio-oils; PNNL-27848 United States 10.2172/1478521 PNNL English; ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States); p Medium: ED; Size: 48 p. DOI 10.2172/1478521

  6. Maddi B, Panisko E, Wietsma T, Lemmon T, Swita M, Albrecht K, Howe D (2017) Quantitative characterization of aqueous byproducts from hydrothermal liquefaction of municipal wastes, food industry wastes, and biomass grown on waste. ACS Sustain Chem Eng 5(3):2205–2214. https://doi.org/10.1021/acssuschemeng.6b02367

    Article  CAS  Google Scholar 

  7. Maddi B, Panisko E, Wietsma T, Lemmon T, Swita M, Albrecht K, Howe D (2016) Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae. Biomass Bioenergy 93:122–130. https://doi.org/10.1016/j.biombioe.2016.07.010

    Article  CAS  Google Scholar 

  8. Davidson SD, Lopez-Ruiz JA, Zhu YH, Cooper AR, Albrecht KO, Dagle RA (2019) Strategies to valorize hydrothermal liquefaction-derived aqueous phase into fuels and chemicals. ACS Sustain Chem Eng 7:19889–19901. https://doi.org/10.1021/acssuschemeng.9b05308

    Article  CAS  Google Scholar 

  9. Davidson SD, Lopez-Ruiz JA, Flake M, Cooper AC, Elkasabi Y, Tomasi Morgano M, Lebarbier Dagle V, Albrecht KO, Dagle RA (2019) Cleanup and conversion of biomass liquefaction aqueous phase to C3–C5 olefins over ZnxZryOz catalyst. Catalysts 9(11):923. https://doi.org/10.3390/catal9110923

    Article  CAS  Google Scholar 

  10. Palkovits S, Palkovits R (2019) The role of electrochemistry in future dynamic bio-refineries: a focus on (non-)Kolbe electrolysis. Chem Ing Tech 91(6):699–706. https://doi.org/10.1002/cite.201800205

    Article  CAS  Google Scholar 

  11. Starace AK, Black BA, Lee DD, Palmiotti EC, Orton KA, Michener WE, ten Dam J, Watson MJ, Beckham GT, Magrini KA, Mukarakate C (2017) Characterization and catalytic upgrading of aqueous stream carbon from catalytic fast pyrolysis of biomass. ACS Sustain Chem Eng 5(12):11761–11769. https://doi.org/10.1021/acssuschemeng.7b03344

    Article  CAS  Google Scholar 

  12. Mukarakate C, Evans RJ, Deutch S, Evans T, Starace AK, ten Dam J, Watson MJ, Magrini K (2017) Reforming biomass derived pyrolysis bio-oil aqueous phase to fuels. Energy Fuels 31(2):1600–1607. https://doi.org/10.1021/acs.energyfuels.6b02463

    Article  CAS  Google Scholar 

  13. Lopez-Ruiz JA, Davis RJ (2014) Decarbonylation of heptanoic acid over carbon-supported platinum nanoparticles. Green Chem 16(2):683–694. https://doi.org/10.1039/c3gc41287c

    Article  CAS  Google Scholar 

  14. Lopez-Ruiz JA, Pham HN, Datye AK, Davis RJ (2015) Reactivity and stability of supported Pd nanoparticles during the liquid-phase and gas-phase decarbonylation of heptanoic acid. Appl Catal A 504:295–307

    Article  CAS  Google Scholar 

  15. Lopez-Ruiz JA, Cooper AR, Li G, Albrecht KO (2017) Enhanced hydrothermal stability and catalytic activity of LaxZryOz mixed oxides for the ketonization of acetic acid in the aqueous condensed phase. ACS Catal 7:6400–6412. https://doi.org/10.1021/acscatal.7b01071

    Article  CAS  Google Scholar 

  16. Davidson SD, Spies KA, Mei D, Kovarik L, Kutnyakov I, Li XS, Lebarbier Dagle V, Albrecht KO, Dagle RA (2017) Steam reforming of acetic acid over co-supported catalysts: coupling ketonization for greater stability. ACS Sustain Chem Eng 5(10):9136–9149. https://doi.org/10.1021/acssuschemeng.7b02052

    Article  CAS  Google Scholar 

  17. Pestman R, van Duijne A, Pieterse JAZ, Ponec V (1995) The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions. J Mol Catal A 103:175–180

    Article  CAS  Google Scholar 

  18. Pestman R, Koster RM, van Duijne A, Pieterse JAZ, Ponec V (1997) Reactions of carboxylic acids on oxides 2 bimolecular reaction of aliphatic acids to ketones. J Catal 168:265–272

    Article  CAS  Google Scholar 

  19. Renz M (2005) Ketonization of carboxylic acids by decarboxylation: mechanism and scope. Eur J Org Chem 2005(6):979–988. https://doi.org/10.1002/ejoc.200400546

    Article  CAS  Google Scholar 

  20. Dooley KM, Bhat AK, Plaisance CP, Roy AD (2007) Ketones from acid condensation using supported CeO2 catalysts: effect of additives. Appl Catal A 320:122–133. https://doi.org/10.1016/j.apcata.2007.01.021

    Article  CAS  Google Scholar 

  21. Kunkes EL, Gürbüz EI, Dumesic JA (2009) Vapour-phase C-C coupling reactions of biomass-derived oxygenates over Pd/CeZrOx catalysts. J Catal 266:236–249

    Article  CAS  Google Scholar 

  22. Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. J Catal 266(1):71–78. https://doi.org/10.1016/j.jcat.2009.05.015

    Article  CAS  Google Scholar 

  23. Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2010) Ketonization reactions of carboxylic acids and esters over ceria-zirconia as biomass-upgrading processes. Ind Eng Chem Res 49(13):6027–6033. https://doi.org/10.1021/ie1004338

    Article  CAS  Google Scholar 

  24. Yamada Y, Segawa M, Sato F, Kojima T, Sato S (2011) Catalytic performance of rare earth oxides in ketonization of acetic acid. J Mol Catal A 346(1–2):79–86. https://doi.org/10.1016/j.molcata.2011.06.011

    Article  CAS  Google Scholar 

  25. Pham TN, Shi DC, Sooknoi T, Resasco DE (2012) Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts. J Catal 295:169–178. https://doi.org/10.1016/j.jcat.2012.08.012

    Article  CAS  Google Scholar 

  26. Snell RW, Shanks BH (2013) Ceria calcination temperature influence on acetic acid ketonization: mechanistic insights. Appl Catal A 451:86–93. https://doi.org/10.1016/j.apcata.2012.08.043

    Article  CAS  Google Scholar 

  27. Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal 3(11):2456–2473. https://doi.org/10.1021/Cs400501h

    Article  CAS  Google Scholar 

  28. Pulido A, Oliver-Tomas B, Renz M, Boronat M, Corma A (2013) Ketonic decarboxylation reaction mechanism: a combined experimental and DFT study. Chemsuschem 6(1):141–151. https://doi.org/10.1002/cssc.201200419

    Article  CAS  PubMed  Google Scholar 

  29. Snell RW, Shanks BH (2013) Insights into the ceria-catalyzed ketonization reaction for biofuels applications. ACS Catal 3(4):783–789. https://doi.org/10.1021/cs400003n

    Article  CAS  Google Scholar 

  30. Pham TN, Shi DC, Resasco DE (2014) Kinetics and mechanism of ketonization of acetic acid on Ru/TiO2 catalyst. Top Catal 57(6–9):706–714. https://doi.org/10.1007/s11244-013-0227-7

    Article  CAS  Google Scholar 

  31. Snell RW, Shanks BH (2014) CeMOx-promoted ketonization of biomass-derived carboxylic acids in the condensed phase. ACS Catal 4(2):512–518. https://doi.org/10.1021/cs400851j

    Article  CAS  Google Scholar 

  32. Pham TN, Shi DC, Resasco DE (2014) Reaction kinetics and mechanism of ketonization of aliphatic carboxylic acids with different carbon chain lengths over Ru/TiO2 catalyst. J Catal 314:149–158. https://doi.org/10.1016/j.jcat.2014.04.008

    Article  CAS  Google Scholar 

  33. Ignatchenko AV, DeRaddo JS, Marino VJ, Mercado A (2015) Cross-selectivity in the catalytic ketonization of carboxylic acids. Appl Catal A 498:10–24. https://doi.org/10.1016/j.apcata.2015.03.017

    Article  CAS  Google Scholar 

  34. Baylon RAL, Sun J, Martin KJ, Venkitasubramanian P, Wang Y (2016) Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid–base pairs. Chem Commun 52(28):4975–4978. https://doi.org/10.1039/C5CC10528E

    Article  CAS  Google Scholar 

  35. Wang S, Iglesia E (2017) Experimental and theoretical assessment of the mechanism and site requirements for ketonization of carboxylic acids on oxides. J Catal 345:183–206. https://doi.org/10.1016/j.jcat.2016.11.006

    Article  CAS  Google Scholar 

  36. Andrews E, Lopez-Ruiz JA, Egbert J, Koh K, Sanyal U, Miao S, Li D, Karkamkar A, Derewinski MA, Holladay J, Gutiérrez OY, Holladay JD (2020) Performance of base and noble metals for electrocatalytic hydrogenation of bio-oil-derived oxygenated compounds. ACS Sustain Chem Eng 8(11):4407–4418. https://doi.org/10.1021/acssuschemeng.9b07041

    Article  CAS  Google Scholar 

  37. Zhou Y, Gao Y, Zhong X, Jiang W, Liang Y, Niu P, Li M, Zhuang G, Li X, Wang J (2019) Electrocatalytic upgrading of lignin-derived bio-oil based on surface-engineered PtNiB nanostructure. Adv Funct Mater 29(10):1807651. https://doi.org/10.1002/adfm.201807651

    Article  CAS  Google Scholar 

  38. Garedew M, Young-Farhat D, Jackson JE, Saffron CM (2019) Electrocatalytic upgrading of phenolic compounds observed after lignin pyrolysis. ACS Sustain Chem Eng 7(9):8375–8386. https://doi.org/10.1021/acssuschemeng.9b00019

    Article  CAS  Google Scholar 

  39. Lopez-Ruiz JA, Andrews EA, Akhade SA, Lee M, Koh K, Sanyal U, Yuk SF, Karkamkar AJ, Derewinski MA, Holladay J, Glezakou VA, Rousseau R, Gutiérrez OY, Holladay JD (2019) Understanding the role of metal and molecular structure on the electrocatalytic hydrogenation of oxygenated organic compounds. ACS Catal 9(11):9964–9972. https://doi.org/10.1021/acscatal.9b02921

    Article  CAS  Google Scholar 

  40. Koh K, Sanyal U, Lee M-S, Cheng G, Song M, Glezakou V-A, Liu Y, Li D, Rousseau R, Gutiérrez OY, Karkamkar A, Derewinski M, Lercher JA (2019) Electrochemically tunable proton-coupled electron transfer in Pd-catalyzed benzaldehyde hydrogenation. Angew Chem 131:1–6. https://doi.org/10.1002/ange.201912241

    Article  Google Scholar 

  41. Song Y, Sanyal U, Pangotra D, Holladay JD, Camaioni D, Gutiérrez OY, Lercher JA (2018) Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals. J Catal 359:68–75. https://doi.org/10.1016/j.jcat.2017.12.026

    Article  CAS  Google Scholar 

  42. Sanyal U, Lopez-Ruiz J, Padmaperuma AB, Holladay J, Gutiérrez OY (2018) Electrocatalytic hydrogenation of oxygenated compounds in aqueous phase. Org Process Res Dev 22(12):1590–1598. https://doi.org/10.1021/acs.oprd.8b00236

    Article  CAS  Google Scholar 

  43. Lopez-Ruiz JA, Sanyal U, Egbert J, Gutiérrez OY, Holladay J (2018) Kinetic investigation of the sustainable electrocatalytic hydrogenation of benzaldehyde on Pd/C: effect of electrolyte composition and half-cell potentials. ACS Sustain Chem Eng 6(12):16073–16085. https://doi.org/10.1021/acssuschemeng.8b02637

    Article  CAS  Google Scholar 

  44. Lam CH, Das S, Erickson NC, Hyzer CD, Garedew M, Anderson JE, Wallington TJ, Tamor MA, Jackson JE, Saffron CM (2017) Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustain Energy Fuels 1(2):258–266. https://doi.org/10.1039/C6SE00080K

    Article  CAS  Google Scholar 

  45. Singh N, Song Y, Gutiérrez OY, Camaioni DM, Campbell CT, Lercher JA (2016) Electrocatalytic hydrogenation of phenol over platinum and rhodium: unexpected temperature effects resolved. ACS Catal 6(11):7466–7470. https://doi.org/10.1021/acscatal.6b02296

    Article  CAS  Google Scholar 

  46. Singh N, Nguyen M-T, Cantu DC, Mehdi BL, Browning ND, Fulton JL, Zheng J, Balasubramanian M, Gutiérrez OY, Glezakou V-A, Rousseau R, Govind N, Camaioni DM, Campbell CT, Lercher JA (2018) Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. J Catal 368:8–19. https://doi.org/10.1016/j.jcat.2018.09.021

    Article  CAS  Google Scholar 

  47. Song Y, Chia SH, Sanyal U, Gutiérrez OY, Lercher JA (2016) Integrated catalytic and electrocatalytic conversion of substituted phenols and diaryl ethers. J Catal 344:263–272. https://doi.org/10.1016/j.jcat.2016.09.030

    Article  CAS  Google Scholar 

  48. Carroll KJ, Burger T, Langenegger L, Chavez S, Hunt ST, Román-Leshkov Y, Brushett FR (2016) Electrocatalytic hydrogenation of oxygenates using earth-abundant transition-metal nanoparticles under mild conditions. Chemsuschem 9(15):1904–1910. https://doi.org/10.1002/cssc.201600290

    Article  CAS  PubMed  Google Scholar 

  49. Song Y, Gutiérrez OY, Herranz J, Lercher JA (2016) Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions. Appl Catal B 182:236–246. https://doi.org/10.1016/j.apcatb.2015.09.027

    Article  CAS  Google Scholar 

  50. Jung S, Biddinger EJ (2016) Electrocatalytic hydrogenation and hydrogenolysis of furfural and the impact of homogeneous side reactions of furanic compounds in acidic electrolytes. ACS Sustain Chem Eng 4(12):6500–6508. https://doi.org/10.1021/acssuschemeng.6b01314

    Article  CAS  Google Scholar 

  51. Villalba M, del Pozo M, Calvo EJ (2015) Electrocatalytic hydrogenation of acetophenone and benzophenone using palladium electrodes. Electrochim Acta 164:125–131. https://doi.org/10.1016/j.electacta.2015.02.113

    Article  CAS  Google Scholar 

  52. dos Santos TR, Nilges P, Sauter W, Harnisch F, Schröder U (2015) Electrochemistry for the generation of renewable chemicals: electrochemical conversion of levulinic acid. RSC Adv 5(34):26634–26643. https://doi.org/10.1039/C4RA16303F

    Article  CAS  Google Scholar 

  53. Zhao B, Chen M, Guo Q, Fu Y (2014) Electrocatalytic hydrogenation of furfural to furfuryl alcohol using platinum supported on activated carbon fibers. Electrochim Acta 135:139–146. https://doi.org/10.1016/j.electacta.2014.04.164

    Article  CAS  Google Scholar 

  54. Li Z, Kelkar S, Raycraft L, Garedew M, Jackson JE, Miller DJ, Saffron CM (2014) A mild approach for bio-oil stabilization and upgrading: electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth. Green Chem 16(2):844–852. https://doi.org/10.1039/C3GC42303D

    Article  CAS  Google Scholar 

  55. Kwon Y, de Jong E, Raoufmoghaddam S, Koper MTM (2013) Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose. Chemsuschem 6(9):1659–1667. https://doi.org/10.1002/cssc.201300443

    Article  CAS  PubMed  Google Scholar 

  56. Kwon Y, Koper MTM (2013) Electrocatalytic hydrogenation and deoxygenation of glucose on solid metal electrodes. Chemsuschem 6(3):455–462. https://doi.org/10.1002/cssc.201200722

    Article  CAS  PubMed  Google Scholar 

  57. Sáez A, García-García V, Solla-Gullón J, Aldaz A, Montiel V (2013) Electrocatalytic hydrogenation of acetophenone using a polymer electrolyte membrane electrochemical reactor. Electrochim Acta 91:69–74. https://doi.org/10.1016/j.electacta.2012.12.097

    Article  CAS  Google Scholar 

  58. Green SK, Lee J, Kim HJ, Tompsett GA, Kim WB, Huber GW (2013) The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor. Green Chem 15(7):1869–1879. https://doi.org/10.1039/C3GC00090G

    Article  CAS  Google Scholar 

  59. Li Z, Garedew M, Lam CH, Jackson JE, Miller DJ, Saffron CM (2012) Mild electrocatalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activated carbon cloth. Green Chem 14(9):2540–2549. https://doi.org/10.1039/C2GC35552C

    Article  CAS  Google Scholar 

  60. Vilar M, Oliveira JL, Navarro M (2010) Investigation of the hydrogenation reactivity of some organic substrates using an electrocatalytic method. Appl Catal A 372(1):1–7. https://doi.org/10.1016/j.apcata.2009.09.041

    Article  CAS  Google Scholar 

  61. Dalavoy TS, Jackson JE, Swain GM, Miller DJ, Li J, Lipkowski J (2007) Mild electrocatalytic hydrogenation of lactic acid to lactaldehyde and propylene glycol. J Catal 246(1):15–28. https://doi.org/10.1016/j.jcat.2006.11.009

    Article  CAS  Google Scholar 

  62. Owobi-Andely Y, Fiaty K, Laurent P, Bardot C (2000) Use of electrocatalytic membrane reactor for synthesis of sorbitol. Catal Today 56(1):173–178. https://doi.org/10.1016/S0920-5861(99)00274-6

    Article  CAS  Google Scholar 

  63. Menini R, Martel A, Menard H, Lessard J, Vittori O (1998) The electrocatalytic hydrogenation of phenanthrene at Raney nickel electrodes: the influence of an inert gas pressure. Electrochim Acta 43(12):1697–1703. https://doi.org/10.1016/S0013-4686(97)10003-2

    Article  CAS  Google Scholar 

  64. Polcaro AM, Palmas S, Dernini S (1993) Role of catalyst characteristics in electrocatalytic hydrogenation: reduction of benzaldehyde and acetophenone on carbon Felt/Pd electrodes. Ind Eng Chem Res 32:1315–1322. https://doi.org/10.1021/ie00019a00

    Article  CAS  Google Scholar 

  65. Kapałka A, Fóti G, Comninellis C (2009) The importance of electrode material in environmental electrochemistry: formation and reactivity of free hydroxyl radicals on boron-doped diamond electrodes. Electrochim Acta 54(7):2018–2023. https://doi.org/10.1016/j.electacta.2008.06.045

    Article  CAS  Google Scholar 

  66. Singh N, Goldsmith BR (2020) Role of electrocatalysis in the remediation of water pollutants. ACS Catal 10(5):3365–3371. https://doi.org/10.1021/acscatal.9b04167

    Article  CAS  Google Scholar 

  67. Stucki S, Kötz R, Carcer B, Suter W (1991) Electrochemical waste water treatment using high overvoltage anodes Part II: anode performance and applications. J Appl Electrochem 21(2):99–104. https://doi.org/10.1007/BF01464288

    Article  CAS  Google Scholar 

  68. Stang C, Harnisch F (2016) The dilemma of supporting electrolytes for electroorganic synthesis: a case study on Kolbe electrolysis. Chemsuschem 9(1):50–60. https://doi.org/10.1002/cssc.201501407

    Article  CAS  PubMed  Google Scholar 

  69. Kurihara H, Fuchigami T, Tajima T (2008) Kolbe carbon−carbon coupling electrosynthesis using solid-supported bases. J Org Chem 73(17):6888–6890. https://doi.org/10.1021/jo801016f

    Article  CAS  PubMed  Google Scholar 

  70. Levy PF, Sanderson JE, Cheng LK (1984) Kolbe electrolysis of mixtures of aliphatic organic acids. J Electrochem Soc 131(4):773–777. https://doi.org/10.1149/1.2115697

    Article  CAS  Google Scholar 

  71. Sanderson JE, Levy PF, Cheng LK, Barnard GW (1983) The effect of pressure on the product distribution in Kolbe electrolysis. J Electrochem Soc 130(9):1844–1848. https://doi.org/10.1149/1.2120109

    Article  CAS  Google Scholar 

  72. Vijh AK, Conway BE (1967) Electrode kinetic aspects of the Kolbe reaction. Chem Rev 67(6):623–664. https://doi.org/10.1021/cr60250a003

    Article  CAS  Google Scholar 

  73. Fichter F (1939) Electrochemical experiments with various organic acids. Trans Electrochem Soc 75(1):309–332. https://doi.org/10.1149/1.3498380

    Article  Google Scholar 

  74. Yuan G, Wu C, Zeng G, Niu X, Shen G, Wang L, Zhang X, Luque R, Wang Q (2019) Kolbe Electrolysis of biomass-derived fatty acids over Pt nanocrystals in an electrochemical cell. ChemCatChem. https://doi.org/10.1002/cctc.201901443

    Article  Google Scholar 

  75. Qiu Y, Lopez-Ruiz JA, Sanyal U, Andrews E, Gutiérrez OY, Holladay JD (2020) Anodic electrocatalytic conversion of carboxylic acids on thin films of RuO2, IrO2, and Pt. Appl Catal B 277:119277. https://doi.org/10.1016/j.apcatb.2020.119277

  76. Pacific Northwest National Laboratory, P. Process Development Units. https://www.pnnl.gov/process-development-units

  77. (EIA), U. S. E. I. A. Industrial Electricity Prices. https://www.eia.gov/electricity/data/browser/#/topic/7?agg=0,1&geo=g&endsec=vg&linechart=ELEC.PRICE.US-ALL.M~ELEC.PRICE.US-RES.M~ELEC.PRICE.US-COM.M~ELEC.PRICE.US-IND.M&columnchart=ELEC.PRICE.US-ALL.M~ELEC.PRICE.US-RES.M~ELEC.PRICE.US-COM.M~ELEC.PRICE.US-IND.M&map=ELEC.PRICE.US-ALL.M&freq=M&start=200101&end=201912&ctype=map&ltype=pin&rtype=s&maptype=0&rse=0&pin=

Download references

Acknowledgements

The research described in this paper is part of the Chemical Transformation Initiative at Pacific Northwest National Laboratory (PNNL), conducted under PNNL’s Laboratory Directed Research and Development Program and Cooperative Research and Development Agreement with at Southern California Gas Company (SoCalGas). PNNL is a U.S. Department of Energy (DOE) multiprogram national laboratory located in Richland, Washington. M.D. was supported by the DOE Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences (Transdisciplinary Approaches to Realize Novel Catalytic Pathways to Energy Carriers, FWP 47319). We gratefully acknowledge Teresa Lemmon and Marie Swita at PNNL for their help with sample analysis. We acknowledge Andrew J. Schmidt and Daniel B. Anderson at PNNL for providing the HTL-derived aqueous feedstock. We also acknowledge helpful discussions with Ron Kent at SoCalGas, Paul G. Ghougassian at SoCalGas, Andrew J. Schmidt at PNNL, Daniel B. Anderson at PNNL, Lesley J. Snowden-Swan at PNNL, Robert S. Weber at PNNL, and Charles J. Freeman at PNNL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver Y. Gutiérrez or Jamie D. Holladay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Ruiz, J.A., Qiu, Y., Andrews, E. et al. Electrocatalytic valorization into H2 and hydrocarbons of an aqueous stream derived from hydrothermal liquefaction. J Appl Electrochem 51, 107–118 (2021). https://doi.org/10.1007/s10800-020-01452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01452-x

Keywords

Navigation